首页> 外文OA文献 >Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces
【2h】

Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces

机译:具有弹性界面的二维刚性周期性块状材料中的色散波传播

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Dispersive waves in two-dimensional blocky materials with periodic microstructure made up of equal rigid units, having polygonal centro-symmetric shape with mass and gyroscopic inertia, connected with each other through homogeneous linear interfaces, have been analyzed. The acoustic behavior of the resulting discrete Lagrangian model has been obtained through a Floquet–Bloch approach. From the resulting eigenproblem derived by the Euler–Lagrange equations for harmonic wave propagation, two acoustic branches and an optical branch are obtained in the frequency spectrum. A micropolar continuum model to approximate the Lagrangian model has been derived based on a second-order Taylor expansion of the generalized macro-displacement field. The constitutive equations of the equivalent micropolar continuum have been obtained, with the peculiarity that the positive definiteness of the second-order symmetric tensor associated to the curvature vector is not guaranteed and depends both on the ratio between the local tangent and normal stiffness and on the block shape. The same results have been obtained through an extended Hamiltonian derivation of the equations of motion for the equivalent continuum that is related to the Hill-Mandel macro homogeneity condition. Moreover, it is shown that the hermitian matrix governing the eigenproblem of harmonic wave propagation in the micropolar model is exact up to the second order in the norm of the wave vector with respect to the same matrix from the discrete model. To appreciate the acoustic behavior of some relevant blocky materials and to understand the reliability and the validity limits of the micropolar continuum model, some blocky patterns have been analyzed: rhombic and hexagonal assemblages and running bond masonry. From the results obtained in the examples, the obtained micropolar model turns out to be particularly accurate to describe dispersive functions for wavelengths greater than 3-4 times the characteristic dimension of the block. Finally, in consideration that the positive definiteness of the second order elastic tensor of the micropolar model is not guaranteed, the hyperbolicity of the equation of motion has been investigated by considering the Legendre–Hadamard ellipticity conditions requiring real values for the wave velocity.
机译:摘要分析了周期性微结构由相等的刚性单元组成,质量和陀螺惯性为多边形,中心对称的多边形的二维块状材料通过均匀线性界面相互连接的色散波。最终的离散拉格朗日模型的声学行为已通过Floquet-Bloch方法获得。从通过Euler-Lagrange方程得出的用于谐波传播的本征问题,可以在频谱中获得两个声学分支和一个光学分支。基于广义宏位移场的二阶泰勒展开,推导了一个近似拉格朗日模型的微极连续谱模型。得到了等效的微极连续体的本构方程,其特殊之处在于不能保证与曲率矢量相关的二阶对称张量的正定性,并且取决于局部切线和法向刚度之间的比率以及块状。通过对与Hill-Mandel宏同质性条件有关的等效连续体的运动方程进行扩展的哈密顿推导,可以获得相同的结果。此外,还表明,相对于离散模型中的同一矩阵,控制微极模型中谐波传播本征问题的厄米矩阵精确到波矢量范数的二阶。为了了解某些相关块状材料的声学性能并了解微极性连续体模型的可靠性和有效性限制,已分析了一些块状模式:菱形和六角形组合以及流动粘结砌体。从实施例中获得的结果,所获得的微极性模型对于描述波长大于块特征尺寸的3-4倍的色散函数特别准确。最后,考虑到不能保证微极模型的二阶弹性张量的正定性,通过考虑要求波速具有实际值的勒让德-哈达玛椭圆率条件,研究了运动方程的双曲率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号